PHYSICAL REVIEW E 79, 016212 (2009)

Defect-mediated turbulence in the Belousov-Zhabotinsky reaction
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Statistical properties of topological defects in defect-mediated turbulence due to the Doppler instability are
examined experimentally in the Belousov-Zhabotinsky reaction. By applying the phase space reconstruction
approach, processes of defect creation, annihilation, and defect movement are analyzed. The defect dynamics
can be well interpreted within the framework of stochastic Markovian process. In contrast to previous studies
that made direct measure of the gain and loss rates, which is practically difficult, we demonstrate that the rates
can be obtained directly from the analysis of the time series of defects, and the shape of the probability

distribution function can be reproduced in a simple way.
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Topological defects caused by symmetry breaking are
abundant in nature. Examples in physics include screw dis-
locations in crystal [1], fluxon-antifluxon pairs in Josephson
transmission line [2], and magnetic monopoles in cosmology
[3]. There are also examples in chemistry and hydrodynam-
ics, from defect-mediated turbulence in the Belousov-
Zhabotinsky (BZ) reaction [4] and electrochemical reactions
[5], to vortices in fluids [6] and convective systems [7]. In
spatially extended systems, the presence of defects often
dominates spatiotemporal chaos. Although pattern formation
has been intensively studied in the past decades, defect-
mediated turbulence is still poorly understood and remains a
challenge in this field. To characterize the disordered states
featured by defects, recent attention has been paid to the
statistical properties of topological defects. Theoretical work
was first carried out with the complex Ginzburg-Landau
equation (CGLE) [8], where the probability distribution
function (PDF) for the number of defects was found to be the
squared-Poisson distribution. Statistical properties of defects
were also analyzed numerically in a FitzHugh-Nagumo-type
system [9], in the chemical Willamowski-Rossler reaction-
diffusion model [10], and in a model of forced catalytic CO
oxidation [11]. Experimental studies of defect statistics are
still rare and were mainly reported from electroconvection in
liquid crystals [12] and catalytic surface reactions [13].

The BZ reaction that takes place in the spatial open reac-
tor has been a prototype model system for the study of pat-
tern formation in reaction-diffusion systems [4]. As one of
the most common spatiotemporal patterns in oscillatory and
excitable media, spiral waves have been extensively studied
in the BZ system. The spiral waves were reported to lose
their stabilities through scenarios such as the Doppler insta-
bility [14] and the Eckhaus instability [15], and generate
chemical turbulence dominated by spiral vortices. While the
defect-mediated turbulence in the BZ reaction has been ob-
served for many years, its dynamics has never been studied
in detail.
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In this paper, the statistical properties of defects in the
defect-mediated turbulence are examined in the reaction-
diffusion system. Using our experimental setup of the spatial
open reactor, image sequences of defect-mediated turbulence
due to the Doppler instability in the BZ reaction are re-
corded. The Doppler instability is caused by the nonsupport
of excessively frequent excitation at local regions due to the
Doppler effect of the nonlinear waves and tips number can
increase quickly from one to many. The images are analyzed
in combination with sequences generated by reconstructing
the phase space of the local dynamics. The defect dynamics
is found to be well interpreted within the framework of a
stochastic Markovian process. In contrast to previous studies
that made direct measure of the gain and loss rates, we show
that the rates of defect creation, decay, and entering and leav-
ing the observation area can be obtained directly from the
analysis of the time series of defects. The shape of the prob-
ability distribution function (PDF) can then be reproduced in
a simple way.

Experiment. The BZ experiment is carried out in a spatial
open reactor similar to that used in previous studies [16]. The
reaction medium is a 0.4-mm-thick porous glass, 22 mm in
diameter, sandwiched by two continuously fed stirred tank
reactors (CSTRs) (I) and (II), and the spatial open reactor is
placed in a constant temperature device. A ferroin-catalyzed
BZ reaction is used. The two-dimensional (2D) projection of
the patterns is registered by a CCD camera. The data are
recorded in a computer via a frame grabber.

Different chemical reactants are fed into CSTRs (I) and
(IN); they diffuse into the reaction medium and form a pat-
terned layer that supports spiral waves inside the medium.
Under our experimental conditions, the patterned layer is
thin and can be considered as a 2D system [17]. In the ex-
periments, we choose [H,SO4]' as the control parameter,
varying from 0.33M to 0.40M with precision 0.0075M.
Other parameters are kept fixed: [NaBrO;]"'=0.6M,
[CH,(COOH),]'=0.1M, [KBr]'=30 mM, and [Ferroin]"
=0.15 mM. The reaction temperature is 25 *=0.2 °C.

We begin the experiments at low [H,SO,]" with only one
meandering spiral in the medium, which has a cycloid spiral
tip trajectory [19]. When we increase the control parameter
to 0.3450M, the meandering spiral begins to break up due to
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FIG. 1. (Color online) The isoline contours and the distin-
guished topological positive (with charge mmpzl) and negative
(with m,=~1) defects denoted by “+” and “—,” respectively.
[H,S0,]'=0.3750M.

the Doppler instability and defect-mediated turbulence will
dominate the system [17]. If one increases [H,SO,]' further
beyond the transition point, the patterns become more turbu-
lent. We record movies of the turbulent pattern under differ-
ent [H,SO,]" for latter processing [18]. The time interval At
between two adjacent frames is always 0.4 s and the movies
typically consist of more than 10 000 images.

Results. A defect in the turbulent pattern corresponds to a
local position where the oscillation amplitude is zero and the
phase is undefined. It is characterized by its topological
charge defined by %Tsﬁ Vé(r,0)dl=m,y, where ¢(r,1) is the
local phase and the integral is calculated along a closed curve
surrounding the defect, and the charge m,, takes typically
+1 or —1. As only one image sequence is recorded for the
time evolution of turbulence in our experiments, we generate
another image sequence v(r,#;) from the original image in-
tensity u(r,7;) by reconstructing the phase space of the local
dynamics with time-delayed coordinates, i.e., v(r,f;)
=u(r,t;,—7), with 7=3.2 s. The location of a defect can then
be identified where the isoline contours of u and v fields
intersect. Figure 1 demonstrates the contours and the distin-
guished defects marked with “+” or “—" for their topologi-
cal charges +1 or —1 [18].

To examine the dynamics of topological defects, we con-
centrate on the central part of the images as marked in Fig. 1,
which is a 6.9 X4.1 mm area. The defects are created and
annihilated irregularly in pairs, and also enter or leave inci-
dentally the area of observation. The number of defects in
the area as a function of time n(z;) is found to be a random
fluctuation around its mean value. Figure 2 depicts PDFs for
the number of defects with different value of [H,SO,]' (“*O”
in Fig. 2). We see that the experimental distributions are
always lower than the Poisson distribution. To obtain the
gain and loss rates of defects, we apply a computer-
automated procedure to distinguish the elementary events:
Creations and annihilations of defect in pairs, where the
number of defects is increased or decreased by 2; and the
boundary crossings when defects are entering or leaving the
observation area, where the defect number is increased or
reduced by 1. The procedure is based on a nearest-neighbor
tracking scheme, and has been checked manually to ensure
its accuracy. The rates for the elementary events are calcu-
lated by counting the number of current defects and those
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FIG. 2. The probability distributions of defect numbers » under
different concentration [H,SO4]% (a) 0.3525M; (b) 0.3750M; (c)
0.3825M; (d) 0.3975M. Open circles are for experimental results,
dotted curves are Poisson distributions, and black curves are for
theoretical predictions.

that are created, annihilated, entering, and leaving in a sub-
sequent time unit Az and are then averaged over the recorded
experimental time. An example of the gain and loss rates as
functions of the defect number are shown in Fig. 3. The
creation, the entering, and the leaving show linear depen-
dence on the number of defects n, while the annihilation rate
is quadratic. As the concentration [H,SO,]' is varied, the
linear dependence of creation-entering-leaving and quadratic
dependence of annihilation on defect numbers are not differ-
ent. The rates for defects entering and leaving the observa-
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FIG. 3. Gain and loss rates obtained from direct experimental
measurements (“A”) and from the transition matrix S(%) o)
with D=100. The full lines are fittings of the data. (a) Annihilation,
fitted with A(n)=3.56 X 10°n2+4.15X 107%n; (b) leaving, fitted
with L(n)=146X10"*n; (c) entering, fitted with E(n)=3.10
X 10737+2.00 X 1073; (d) creation, fitted with C(n)=5.40X 107n
+3.18 X 107*. [H,S0,]'=0.3750M.
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FIG. 4. (Color online) Graphic representation of the transition
matrix S(Af) generated with [H,S0,]'=0.3750M. The transition
rates concentrate on the matrix diagonal, and elements far from the
diagonal take very small values.

tion area increase linearly when there are more defects
present in the system, implying a growing mobility and in-
stability of the defects. The creation rate grows also linearly
with defects in the system, suggesting that besides a constant
creation rate, the instability of the system grows when more
defects are present in the system and defects are created with
an additional rate proportional to defect numbers.

The experimental PDFs for the number of defects can be
explained with a simple probabilistic model by assuming that
the defects are statistically independent and the gain and loss
of defects in the observed area follow a discrete stochastic
Markovian transition process. In previous studies, the shape
of the PDF was always interpreted on the base of the ob-
served gain and loss rates. In the following, we demonstrate
that the experimental data including both the gain or loss
rates and the PDFs can be explained directly from the time
series of defect number n(z;).

In the framework of a Markovian transition process, the
transition rate S(At), ; for a current state having j defects to
jump to a state with k defects can be obtained by checking
every jumping in the time interval At i.e., from n(z;) to
n(t;,), for its occurrence frequency in the time series n(z;).
The rate S(A#). ; can then be readily obtained and normalized
by 2,S(At), ;=1. Figure 4 depicts a graphic representation of
the transition matrix with concentration [H,SO,]'
=0.3750M. Most of the matrix elements are trivial and the
nonzero elements concentrate along the neighborhood of the
diagonal. The master equation for the PDF P(k,t) having k
defects at time ¢ takes the following form:

+00

P(k,t+ A1) = 2, S(AD), PG, 1). (1)

J=0

In the stationary state of detailed balance, the probability
distribution P(k) for the number of defects satisfies the mas-
ter equation, S(A7)P=P. In practice, the number of defects is
limited in a certain range [0, N], and the stationary probabil-
ity P(k) satisfies the linear algebra equation,
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With the transition matrix S determined from the time series
of defect number n(z;), the stationary probability P(k) ob-
tained from the above equation is in exact agreement with
the experimental distributions (not shown). The underlying
dynamics of defect is thus a well-defined Markovian transi-
tion process.

The transition rate S(Af), ; is a function of Az, which is
the time interval between two adjacent frames of the movies.
Ar=0.4 s, which was adopted in our experiments, is not very
small as compared to 15 s oscillation period of the media. If
At is reduced by D folds to %, the new transition matrix
S(%) satisfies the relation,

sc-s() (%)
D D
%/—J

D

3)
Thus S(%) can be obtained by computing the principal Dth
root of S(A¢) [23]. We find that as D is large enough, the
newly calculated matrix S(%) contains only nonzero ele-
ments of S(3%),; with k=j~2,j~1,j,j+1,j+2.

The transition rate S(A#), ; has been contributed in com-
bination by the underlying elementary steps of defect cre-
ation, decay, entering and leaving, and their concurrences in
the time interval Ar. For instance, in a jump from j to j+2, a
defect-creation event and a concurrence of two entering
events would both contribute to S(A7);,, ;; a jump from j to
j+1 would be fulfilled through simply an entering event or a
combination of a creation and a leaving event, etc. When At
is decreased, the chance of concurrence of these elementary
processes is expected to be reduced significantly. The transi-
tion rate would be the most principally contributed by an
individual elementary step. In fact, the contribution to the
transition rate from an elementary step is a first-order infini-
tesimal of the time interval, while the contributions from
their concurrences are the second- and even higher-order in-
finitesimals. As the time interval is sufficiently small, the
transition rate S(Af), ; could be considered as being solely
contributed by one of the four elementary steps. Therefore,
the nonzero elements S(%)k, ; obtained when D is sufficiently
large correspond, respectively, to the rates for the four el-
ementary processes: S(%)ﬂz, ; 1s the rate for defect creation
C()); S(%) -2 is the rate for defect annihilation A(j),
S(%)]‘H,j and S(%)j_l.j are the rates E(j) and L(j) for a defect
to enter and to leave the observation area, respectively. In
fact, as D grows to infinity, the nonzero elements in S(%)
become quickly proportional to A¢/D, the gain and loss rates
can be readily obtained. While how fine the time resolution
At/D should be could not be deduced a priori in order to
resolve the gain and loss rates, in practice we find that the
rates thus obtained converge very quickly as D grows. The
rates can be well generated with a D larger than 50.
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Figure 3 demonstrates the transition rates obtained with
the time interval %:0.004 s (with D=100). They are in
agreement with the rates determined by checking directly the
image sequence. The rates are found to be best fitted with
simple functions: A(n)=an*+an, L(n)=0n, E(n)=en+e,
and C(n)=cn+c,. With these fittings, we can reconstruct the
transition matrix Sf(%’) which is a fitting for S(%). The sta-
tionary probability distributions P(n) obtained by solving
Sf(%)P:P turn out to agree very well with the experimental
data, as has been depicted in Fig. 2.

Conclusion and Discussion. We have studied the statisti-
cal properties of topological defects in the chemical turbu-
lence caused by the Doppler instability of spiral waves in the
BZ reaction. Images recorded in our experiments and the
dynamics of defects have been analyzed by reconstructing a
two-dimensional phase space for the local dynamics. We
have demonstrated that statistical properties of the defects
can be well explained within the framework of a stochastic
Markovian process. In addition to the direct measuring of the
gain and loss rates of the defects, which is practically a dif-
ficult approach, we have shown that the rates can be alterna-
tively and conveniently generated from the time series of
defect number n(z;) when the transition matrix S(Ar) goes to
the limit Ar—0.

The gain and loss rates could be regarded as a measure of
the instability for the turbulence. A faster gain or loss rate
implies a more intensive instability in the turbulence. The
rates are also different from different systems, implying char-
acteristic instabilities for turbulence in a specific system. The
defect annihilation rate in the BZ reaction we report here is a
combined quadratic and linear dependence on the defect
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number n. This is identical with the results reported earlier
from the catalytic surface reaction [20] and CGLE influenced
by noise [21], but deviates from the result of Gil er al. [8]
and the case of electroconvection in liquid crystals [12]
where the annihilation rate was previously found to be pro-
portional to the square of n. We find that the creation, enter-
ing, and leaving of defects increase linearly with n. This is in
contrast to the catalytic surface reaction [20] where the cre-
ation and the entering rates are constant and the leaving of
defects is a linear function of n. In the BZ reaction, the rates
for defects entering and leaving the observation area increase
linearly when there are more defects present in the system,
implying a growing mobility and instability of the defects. A
quadratic polynomial with an additional linear term implies
that the instability of the system is increased by an amount
compared to the simple quadratic case. No matter the differ-
ent gain and loss rates of defects in different systems, statis-
tical properties of defects have been uniformly explained in
the framework of a Markovian transition process. The statis-
tical description of defect chaos was recently extended to the
Gray-Scott system where the disordered states are dominated
by the random creation and decay of self-replicating spots
[22]. Combined, the findings in defect chaos and the turbu-
lence dominated by other types of entities, we suggest that
the Markovian transition process provides a potentially uni-
versal description of statistical properties in spatiotemporal
chaos.
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